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§1 Introduction

Let us suppose that at a telephone exchange calls axe

amriving at the Instants T1, T2' 'r3 """, where

0 <T 1 < '2 <"."< Vn < " ... < 00 . As usual, in quuing theory,

we assume that the Inter-arrival times On = -n - n./L (n 91,2,..o ,#0oO)

are Identically distributed, independent, positive random variables

with distribution funotion

1) Pjen .1xj = F(z) , (n 1,,..o

Let

2) ,( = J xdF(x),

and

V(s) .e"XdP(x)
10

The input is said to be a recurrent process. We shall assume that

there are infinitely many lines available and that, therefore, no

call is ever lost. Ordinarily, It is assumed that the holding times

(the durations of the connections) are Identically distributed,

independent, random variables with an exponential distribution. The

American folklore, however, assumes that women talk more than men.

In this paper, therefore, we shall consider the possibility of calls

requiring one of several (a) different exponential holding times.

Por simplicity, let us consider the case where s - 2. Thus,

when a call arrives, it will be either of the first kind with pro.

bability p, or of the second kind with probability q, The holding
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times of calls of the first kind have the distribution funnotion

4) •()=1-0"x

The holding times of calls of the second kind have the distribution

function

5) H H2 (x) = 1-e"".

We let (M(t), 2 (t)) be a vector random variable denoting

the number of calls of the first and second kinds respectively

present in the system at time t. We define (*n,•n) to be

e., (nn) is the state of the system immediately before the

n-th arrival. Thus, the system is in state Ejk at tims t if

( 1(t) ) = (5 , k) .

We shall obtain the binomial momenta of the limiting distribu-

tion of the imbedded Markov chain (tnn)° In order to accomplish

this, we first give a bivariate extension of Jordan's inversion

formula.

Later, we consider the general case where we allow an arriving

call to have one of the s types of holding time distributions

with probability p,( FI P - 1) Each of the holding time

distributions is assumed to be exponential, i.e.,

6) Hi(x) a 1-. (i o - ,*,..s)
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In section 5, we show that the dual problem of a Poisson

input with the possibility of several differunt holding tim

distributions is easily reduced to the M/G/oo ease discussed

by Takas 1] .

It is well known that the probability theory of Type II

particle counters Is intimately connected with that of the queue

with infinitely many servers. We use our results to derive the

mean time between consecutive registrations in a Type II counter

when the particles arrive according to a recurrent process and

the durations of the impulses produced are distributed as a

weighted sum of exponential random variables.

J2. Extensions of Jordan's Inversion Formula,

If 'Pkl (k - 0,1,2, ... ) is a discrete probability distribu-

tion, ther the r-th binomial moment is defined by

7)r (r)Pk

If the generating function U(z) • Pkz k is analytic in a circle

of radius 1+E , where E can be an arbitrarily small positive
number, then

8) 1 u d(z)
rr dzr" Iszl

and the binomial moments uniquely determine the distribution tPk

Jordan's inversion formula expresses the Pk(k a 04,2, ... J in terms

of the Br(r = 0,1,2, *..).



Theorem 1 (Jordan). -4-

9) P

If

Is a discrete blvariate distributiou, we define the rir2 -th

binomial moment by

10)2)

if ~ U(sZw) - ;0 o j
1ý- ý-O ~k1k2 Z

is analytic In the region IZl < .+E, Iwi < '1+, then

B = 1 ) "" 2U( .
r 1 r 2  r1 jr 2 ' b, P-1A

The fundamental Inversion formula now becomes

12) a 2 -1) ( - 1 ) h) ( ) B. 1 . o

Before proceeding with the proof, I shall state the general

multivariate result which in proved similarly.

Let
PICk 2 -.. kn (k, - o#l#2,...,... ,*k1 - 0,1,2,...)

be a discrete n-vax-iate distribution. Defining the (r1 r 2 *..*rn)-th

binomial momnt by

"13) B_, . _ ... ..r .r() 'n2 2)kk .. ""]a
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then the proper inversion formula is seen to be

(34)

Proof of the Bivariate Case.,

In order to verify the assertion that

1) P00 30 k k 2  A UB ,
k1k2 = "*'r1 r2 2 rr

we substitute the value of Brlr2 in the right side of (15),

obtaining

16) 00 (-l) (-l r2-k\ik 2 1 '00 (a

Using the fact that

and

X2 a nk rr

inteUhsaning the sft

ke) r. _.• n-k2

and~ n ~ ~
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yields

Recal, howver, that (-l)n'] ) -n > k17) 'n k

V If n ak "

Thus, the only non-zero term in our sum occurs when n=k2  and m=k 1 .

Then our sum reduces to

18) Pk) P = "klk2

43o The E&godic Behavior of the Imbedded Markov Chain (9, -n)

Tf we look at our process at the times Just before a call

arrives, then the random variables t, ( 1(9n - O) '1('r. - 0))

form a Markov Chain because we have assumed exponential holding

times, The transition probabilittes are given by

19) PJkfm = ((gn+l.'n+l) ) ( ;9mfl(•n'1n) (jk)l I

+ o q+ q 0 (5)e'Xex(1 0 -''x)i-'C(km+le'mloPx)+'d()

Starting from the initial distribution ,Pk(1) # the distribu-

tions iPk(n)t can be determined successively from the Chapman-

Kolmogoroff equations

20) Pem(n+l) P, (n)
20)= ?;# '~jkem jic
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It is known, however, that it is much more oonvenient to work

with the binomial moments of the distribution (Fnn), i.e.a

Lemma. Let X a Y be two Independent binomial distributions

with parameters (Pn 2 ) (p2 n2 ) respectively. Let P kk=PCX=k. ,Y=k2)

be their ioint distribution. Then

22) Br ~ 2 . X Zr-r 2) P. Pa.

The proof is purely computational.

Theorem 2. We have B(n) = 1 (n = 1,2, ... ) and

23) BI pB(). ,i)
r 1(n+1 =: 'rX r2  .r1 2. + ~ L 1r 2 ~ + %lr2'

Proof By our leamaj,

1i tc+l)1(jn+l)2  -(k), On=x1 -

24) " '-rx " k -r2 " + q() 1 (k+ )eV

because under our conditions the call is of the first kindwith

probability p, and thus

-n+l is binomial with parameters J+l and e"hx

and 7n+1 In binomial with parameters k and .-PR 9
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Likewise, the call Is of the second kind, with probability q,

and thus

%n+l is binomial with parameters j and a" x

and d +1 Is binomial with parameters k+l and •"VX .

Therefore, we have proved (21). Removing the conditioning on

"en yields

25) zEJ('g+l) ('n~l) IM(~~(, e~ 1 ~ 2 )i(i(')(k )+q(i )(k+1)3rl 12 P2

Multiplying both sides of (25) by P (n) and suming over alljk

relevant (5,k), we obtain

26) B (n+1)= • A(rl+r2 p)B (n) + (n) + q (n)
'2 +1 21-1,r2 P1r.

It is clear from (26) that if the limiting distribution

Pjk = lira P gqn) = (J,k)J exists (which it does in our case),

then the binomial moments of jPjkj satisfy the equation

27) Br T ... rj.•+r,2P)] (p Br..Ia + qzlr.,l,
27) F ttr- +r& r l,,r2 + P.1

with Boo = 1

Before presenting the solution to the difference equations above

we introduce further notation. Let D(rlr 2 ) denote the set of all

decroasing paths from (rl,r2) to (0,0). A decreasing path is one

that always goes down or to the left. Let
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C (m n)

if either m or n Is different ftoi so"o; and lot 0(0,0) = 1.

For any path ? in D(r 1 9,r 2 ) feorn

C(Y) -1TC(ft9u2),,

where the product is taken over all points (mli 2 ) of the path.

Theorem 3. The solution to the system of equations (27) is

28) B lr2 ' prlq r2 C

The proof can be accomplished by double Induction but a glance

at the equation shows that the B 'r2 given by (28) fit the

equation and reduce to the results of Takics if p = 1. In his case

there Is only one decreasing path as he dealt with a 1-dimensional
r

problem and Br = TCJ 0 If we Impose the Initial conditions
5=1"

B -ý wo

and

2 3.1

we see that (28) gives the umique solution to ouw equation.

As an example we compute B2 2



There are 6 possible paths

(0.2) (1.2) ..... ,2) fra (2,2) to (0,0). Namely,

(2,2)-(2,1)-(2,o)-(1,o)- (0,0)
(2,2)- (l,2)-(0,2)-(o,l)-(o,o)

(0,1) Ma l) (2,l) (2,2)-(2,l)-(l,l)-(,o0)-(O$o)
(2,2))- (2,1)- (1,1)- (o,i)-(o,o)
(2 ,,2) - (1 2, ) -(', ,l ) -(1 ,o -(o..o)

(2,2)-Cl ,2)-(l..l)-(0,i)-(0,0)
(OM (,0) (2 ,0)

Consequently,

B 2 c C22C1 2C 2 c 0 1 + 2C22C12CICI0

+ C2 2 C2.C 20 C30 + C2 e2ClhalCC + c22C21Clz~zo

J4. The General S-Dimensional Situation.

We now permit an incoming call to have one of s exponential

holding time distributions. We deal with the following model:

Calls arrive at a telephone exchange at times T1 < m2 <400< TU <
The Inter-arrival times on = Tn "rn-1  (n = 1,2, ... ) ar. mutually

independent, identically distributed, random variables. Thus,

29) P(n z '(x) (n = 1,2, o.)

co

30) Jx ()< co

and

31) A(s) -fea'dF,(x)

Each call has probability Pi of having the i-th kind of holding tine

distribution



32) Hi(x) W 1..eL" (U - 1,**or, )

Of course, I= 1 An usual, we assume that holding

time distributions chosen are mutually independent random

- ^nA ý,ndneipendent of the sequence of times of arrival

In-r
We denoto the state of our system at time t by an s-vector

SID*2 (t), gs(t)) where W1 (t) Is the n'mibe:ý of calls

of the i-th kind present in the system at time t . We shall

determine the binomial moments of the imbedded Markov chain of

this process.

The transition probabilities of the s-dimensional chain are

given by

= P~ (k1, #.ks) Ftn1 p,... 1)I
33) P (J °" )(k, to "a a"ks) = P +I k °' k)

= is f 0 i, t (j ).• Pi(10 ki dF(x)

As before, it is easier to work with binomial moments

3~ (n)n334) B,•2,o, Ej \l .) (" ) (9

Proceeding as before, we arrive at the following equation satisfied

by binomial moments of the stationary distributioja
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P lim P !21)

35) B , r" "r-I +8s"

Let D(r 1 , r.. ,is) denote the set of all decreasing paths

from (r 1 ,...,r,) to (0, ... , 0), and let

:1.-,e( mp.•.)

For aay path S in D((rl,..o 5. r) form

c (Y) a TT C (miss ... ,As)

where the product Is taken over all points (ml,...,as) of the

path Y . We now can give an explicit formula for the moments

of the stationary distribution tPjjI... o

TheoM h We .solution to the systeof o, equations. (3) .s

(36) B ,r -ft pi f5a°:' PW [l
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§5. Rem(rks on the Poisson Ingut Ca4n.

Suppose the calls arrive according to a Poisson process.

Each call will have probability p1  of having one of the a

holding time distributions

5
al W)FW P= 1) . (il, .* ,s),

The only requirement on the holding time distributions is that

they have finite mean, i.e.,

A 1 XdRCZ) - J* (1-H.(W)j dz < Go for all I.

This problem is trivial because we can consider the input to be

composed of a different Poisson processes each with parameter

APl . Thus, we can regard our system as s different M/G/ao

systems. If we let tm (•?(t), ... ,§(t)) denote the state

of owr system, then by Theorem 11 of Reference Cl1 (also Theorem 1

page 160 of (21)), we have

37) P Ct(t) - (k 1, #. k~f 1 ¶~

where

1 - Pi x- )z (1 -N,, -,d.



,6. A Related Particle CountimG Proble0m.

In this section wg analyse our problem from the point

of view of particle counting. We assume that particles

arrive at a Type II Counter at times TI, T2, p"., 0, * (nal p2 ,'.. %u0)'

where the inter-arrival times on = -r are identically

distributed, positive, random variables with distribution function

P(x)+ As before, we let
oo

0( a ýOxdF (x)

and

At the instant of Its arrival a particle produOes one of s

kinds of impulses, Each particle has probability Pi of producing

the i-th kind of impulse the duration of which has the distribution

function

38) H1 (x) a l-e"i (1 -

Of course, # P, 1. Purthermore, we assume that the durations

of the impulse times which are chosen are mutually independent,

random variables that are also independent of the sequence of

times of arrival jn°

Although every arriving particle produces an impulse In the

counter, only those particles that arrive when the counter is free

are registered. The tims of arrival of the registered particles
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_jjT• form a subsequence of the sequence JTn". The timesI I S

between consecutive registrations, O I - Tn a"

also Identically distributed, independent, positive random

varables with distribution function R(x). In this section

we shall compute the mean of R(x).

In this particle counting framework, the random variable

0n 0 ) denotes the nadber of Impulses of each

type present In the counter juat before the n-th particle

arriveso In particular, P*(n) Is the probability that

the n-th arrival finds the counter free and is registered.

The limit

11m Po. (n) Po-
fl) *o~ 0 -°P..0

exists and is given by
a

00 co r0

39) PO* *• • 0ZlO l) B1 . r
r1 w0 r.Tzo 1.

where the Br.. are given by (36). By applying Wald's

PFwdamental Identity of Sequential Analysis (see [2) page 183),

we conclude that the mean time between successive registrations

Is

40) A
0.. .Q
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Before we know what kind of particle has arrived, the

duration ot the impulse produced by the particle has the

distribution

41) R W - 1- 5 Pi a

Therefore, the time between consecutive registrations in a

Type II counter, when the particles arrive according to a

recurrent process and the impulse times are distriouted as a

weighted sun of exponentially distributed random variables,

and the time between consecutive registrations in our process

4%es the same distribution. Hence

is also the moan time between successive registrations in this

second process. Since any distribution function can be

approximated by one of the form (41), this result may be of

practical value .Unfortunately, we have not been able to obtain

the variance of R(x) by the use of the Imbedded Mamkov chain.
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